

CO₂ Capture and Chemical Utilization

Wei Wei

Laboratory of Green Chemistry and Applied Catalysis Institute of Coal Chemistry Chinese Academy of Science

Carbon cycle: a positive CO₂ accumulation

24b tons of CO₂ were annually produced on the Earth as a result of human activity but CO₂ consume was limited

CO₂ accumulation and climate change

CO₂ concentration has increased rapidly from 1744 to 2005 and led to the climate change.

Carbon Dioxide (1744-2005 Siple Station Ice Mauna Loa (单位: 10亿公吨) 275 ■经合组织成员 ※北美 ■非经合组织成员 □ 全球

Glacier of Alps

CO₂ emission and disribution

60% of CO_2 emissions resulted from coal-fired plants. The CO_2 capture from large-volume and highly-concentrated CO_2 stationary source is technically feasible and cost-effective for sequestrating CO_2 .

 CO_2 capture, storage or utilization (CCSU)

Government and industries have recently paid much attention to CO_2 problem in China. MOST and NSFC initiate R&D program of abatement and CCSU.

Present status of CO₂ capture

CO₂ capture at present

Absorption in aqueous amines
MEA、DEA、MDEA、DIPA、DGA etc.
Membrane processing
Polymer or inorganic oxide membranes.
Solid sorbents
activated carbon, amine-treated polymers, nanosized oxides.

These current technologies, when applied for CO_2 capture from coal-fired power plants, increase the electricity cost by more than 70%.

Solution to cost reduction

The cost can be reduced if an effective CO₂ capture sorbent is developed which has

- \triangleright a high CO₂ adsorption capacity (>8% wt),
- > a long-term regeneration capacity in a power plant flue gas environment(high-temperature, contaminants)
- a low energy requirement for regeneration compared to the large amount of energy required for the aqueous amine process.

ICC focus on high-temperature CO₂ capture materials

Materials for CO₂ capture at ICC

The focus is on the development of absorbents with the capture capacity over 10wt%.

Materials for CO₂ capture at ICC

Solid soution of mesoporous with high stability showed both weak and strong of high basicity

Materials for CO₂ capture at ICC

The material showed a fast uptake in 15min and then a high capacity of >10wt% at 100° C, and CO_2 TPD repeated well for sample 3 below 400° C, indicating a perfect reusability.

Technology development for CO₂ capture

CO₂ chemical utilization at ICC

CO₂ reforming of methane

- Rh is the most active metal, and has been well accepted for CPOX;
- The barriers is to improve Ni catalyst activity and stability, especially to reduce carbon deposition.

 In order to have same syngas selling Price

Sensitivity Analysis **•••**

- ◆ 90% syngas yield with CH₄ to CO₂ molar ratio at 1:1 is assumed without dilution
- ◆ The noble catalyst charged for CDR is assumed to have price of \$1,000/kg
- Data by home-made EXCEL

CO₂ reforming of methane

> Mesoporous Nanocomposites

- **❖** Nano-particles with zero dimension take for no "steps" and "kinks"
- ***** Carbon deposition occured only when the metal cluster is greater than a critical size
- Metals could be confined by meso-pores and hardly grow up
- **Carbon deposition** was favored by acidic supports, solid base could activate CO₂ and promote coke consumption.

CO₂ reforming of methane

Highly Stable Ni-CaO-ZrO₂ Nanocomposites

CO₂ cycloaddition to propylene or ethylene carbonate

$$CO_2 + CH - CH_2 \xrightarrow{CH_2} CH - CH_2$$

$$\downarrow R$$

$$\downarrow R$$

$$\downarrow R$$

500t/a Pilot Plant

Both PO/EO conversion and PC/EC selectivity over heterogeneous catalysts approached to 100% at mild conditions. By a continual structural reactor, heat was successfully removed and then no deactivation was observed in 1000h operation in 500t/a Pilot Plant.

Cyclic carbonates from glycols in sc-CO₂

Problems:_

- **♦** How to shift the equilibrium
- **♦** How to remove produced H₂O

Strategies:_

- **♦** Reaction take place in sc-CO₂
- **♦** CH₃CN as a coupling solvent

Cyclic carbonates from glycols in sc-CO₂

Side reactions and thermodynamics

The by-product was mainly propylene glycol-2-acetate due to the hydrolysis of CH₃CN into acetamide and then acetic acid and ammonia (along with a small amount of dipropyleneglycol as expectable by-products).

Cyclic carbonates from glycols in sc-CO₂

Catalyst	PG conversion %	Selectivity %		
		PC	PG-2-acetate	DPG
FeCl ₃	42.5	62.3	36.5	1.2
FeCl ₃ 6H ₂ O	35.8	60.2	38.8	1.0
FeCl ₂	38.9	60.4	38.2	1.4
FeCl ₂ 4H ₂ O	30.6	58.5	40.0	1.5
CuCl ₂	15.6	57.7	41.5	0.8
ZnCl ₂	39.2	45.6	37.4	17.0
CoCl ₂	17.6	55.7	43.2	1.1
NiCl ₂	14.5	56.6	42.4	1.0

Fe halides appeared to be active towards the reaction of PG with sc-CO₂ but crystal water had the negative effect.

Cyclic carbonates from glycols in sc-CO₂

PG conversion and PG yield were highly improved by sc-CO₂ and the optimal pressure was 10MPa in present work.

Cyclic carbonates from glycols in sc-CO₂

The effect of CH₃CN on the reaction

Regent	PG Conv.	PC Yield %
CaCl ₂	0	0
MgSO ₄	0	0
4A zeolite	0	0

 CH_3CN was very important for the synthesis. CO_2 could be easily dissolved in CH_3CN , and the hydration of CH_3CN led to the removal of H_2O with the optimal mount.

Synthesis of DMC from urea and methanol

High DMC yield can be achieved with effective product removal

Synthesis of DMC from urea and methanol

The mechanism on solid catalysts

Synthesis of DMC from urea and methanol

5000t/a Demonstration Plant

The price is about \$600/ton on the base of 5000 ton /year demo, which is almost the half price by other technologies.

Coal Chemical process without CO2 emission

ICC · CAS CO₂ Capture and Utilization

Cyclic carbonate from urea and diol

500t/a Demo

entry	diols	alkylene carbonate	Yield (%)
1	1,2-ethanediol	1,2-ethylene carbonate	95.1
2	1,2-propanediol	1,2-propylene carbonate	99.6
3	1,2-butanediol	1,2-butylene carbonate	99.4
4	2,3-butanediol	2,3-butylene carbonate	92.4
5	1,2-cyclohexanediol	1,2-cyclohexylene carbonate	90.5
6	1,3-propanediol	1,3-propylene carbonate	73.
7	1,3-butanediol	1,3-butylene carbonate	74.3

Summary

ICC has developed the solid absorbents and CFB process for in-situ application for flue gas, and led to low cost for CO₂ capture.

ICC has developed some processes for CO₂ chemical utilization.

Acknowledge

MOST
CAS
NSFC
PetroChina

Thanks!